6 research outputs found

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    STEP-BY-STEP APPROACH TO BASIC INTERNET AND EMAIL OPERATIONS FOR BEGINNERS

    Get PDF
    The way Internet has evolved over the years makes it difficult for us to believe that it was created to allow data transfer and communications in case of a nuclear attack on US or a big disaster. Internet has come a long way from a restricted-use network created for such a special purpose. People today communicate with friends, family and business contacts, participate in community activities developed around their interest areas, shop, bank, study, entertain themselves, and research using the Internet. It is therefore becoming essential for people to learn how to use Internet and email

    Timely and reliable packets delivery over Internet of Vehicles (IoVs) for road accidents prevention: a cross-layer approach

    Get PDF
    With the envisioned era of Internet of Things (IoTs), all aspects of Intelligent Transportation Systems (ITS) will be connected to improve transport safety, relieve traffic congestion, reduce air pollution, enhance the comfort of transportation and significantly reduce road accidents. In IoVs, regular exchange of current position, direction, velocity, etc., enables mobile vehicles to predict an upcoming accident and alert the human drivers in time or proactively take precautionary actions to avoid the accident. The actualization of this concept requires the use of channel access protocols that can guarantee reliable and timely broadcast of safety messages. This paper investigates the application of network coding concept to increase content of every transmission and achieve improved broadcast reliability with less number of retransmission. In particular, we proposed Code Aided Retransmission-based Error Recovery (CARER) scheme, introduced an RTB/CTB handshake to overcome hidden node problem and reduce packets collision rate. In order to avoid broadcast storm problem associated with the use of RTB/CTB packet in a broadcast transmission, we developed a rebroadcasting metric used to successfully select a vehicle to rebroadcast the encoded message. The performance of CARER protocol is clearly shown with detailed theoretical analysis and further validated with simulation experiments

    Prevalent Network Threats and Telecommunication Security Challenges and Countermeasures in VoIP Networks

    Get PDF
    Due to the recent global popularity gained by VoIP network while many organisations/industries are employing it for their voice communication needs, optimal security assurance has to be provided to guarantee security of their data/information against present day teeming security threats and attacks prevalent in IP-based networks. This research paper has critically investigated and analysed most of the security challenges associated with VoIP systems and traditional IP data networks; and has proposed several defence measures which if designed and implemented will prevent most (if not all) of the security threats plaguing these networks. Keywords: Network security, VoIP, Computer attack, Security threats, SIP, H.323, Defence measures, IPSec

    Reliable and enhanced cooperative cross-layer medium access control scheme for vehicular communication

    Get PDF
    In an unreliable cluster-based, broadcast vehicular network setting, we investigate the transmission reliability and throughput performance of random network coding (RNC) as a function of the percentage of packet generation rate and transmit power to noise ratio. In the paper, a novel scheme called reliable and efficient cooperative cross-layer MAC (RECMAC) is proposed. The proposed scheme consists of a source vehicle broadcasting packets to a set of receivers (i.e. one-to-many) over independent broadcast erasure channels. The source vehicle performs RNC on N packets and broadcasts the encoded message to a set of receivers. In each hop, several vehicles form a cluster and cooperatively transmit the encoded or re-encoded packet. The combination of RNC, cluster based, and cooperative communications enables RECMAC to optimally minimize data redundancy, which means less overhead, and improve reliability as opposed to coding-based solutions. Theoretical analyses and simulation results show that under the same conditions RECMAC scheme can achieve improved performance in terms of transmission reliability and throughput
    corecore